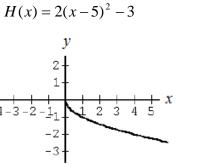
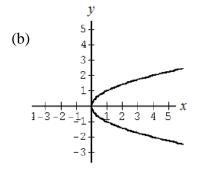
Name: _

Course End Review

Functions and Relations

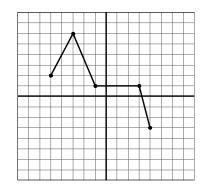

Introduction to Functions:


1. Given:
$$f(x) = 2x + 15$$
 and $g(x) = 3x^2 - 2x + 1$

- (a) Determine f(-2) + g(1) f(0)
- (b) Determine g[f(x)]
- 2. State the domain and range:

(a)

(c)



- 3. A relation f is $f(x) = 2x^2 6x$, evaluate f(-2).
- 4. Determine the inverse to the function f(x) = 4x 2?
- 5. Find the inverse functions for: (a) $f(x) = \frac{x+3}{2}$ (b) $g(x) = 4(x-3)^2 + 1$
- 6. Given $f(x) = -2(x+5)^2 + 3$, what is $f^{-1}(1)$?
- 7. What transformations that are used to graph the function:

(a)
$$g(x) = -5\sqrt{4(x-2)} + 7$$

(b) $y = \frac{1}{2}f\left[-\frac{2}{5}(x+4)\right] - 6$

- 8. The function f(x) is shown in the following graph:
 - (a) State the domain
 - (b) State the range
 - (c) Determine the value of f(3).
 - (d) Determine the value(s) of $f^{-1}(1)$.

9. Determine the equation of a parabola with a vertex of (3, -5) and goes through the point (-4, 10).

Quadratic and Rational Expressions:

- 10. When a ball is tossed into the air, the height, *h*, in meters, of the ball after *t* seconds is modelled by, $h = 30t-5t^2$, where *h* is the height of the ball in meters and *t* is the time in the air in seconds.
 - (a) What is the ball's maximum height.
 - (b) How long does it take to complete its full flight path?
- 11. Solve (2x-5)(2x-5) = 0 (leave in fraction form).
- 12. Solve for $-4(x + 3)^2 + 7 = 0$ (two decimal places).

13. Simplify: (a)
$$\frac{3x+1}{x^2+3x+2} - \frac{4x}{x^2+5x+6} + \frac{5x-3}{x^2+4x+3}$$

(b)
$$\frac{x^2 - 3x - 4}{x^2 + 5x + 6} \times \frac{x^2 - 4}{x^2 - 2x - 3} \div \frac{x^2 - 4x}{(x + 3)^2}$$

14. Simplify and state <u>all</u> the restrictions: $\frac{m^2 - 4m - 5}{5m^2 - 25m} \times \frac{15m^2}{m^2 + 3m + 2} \div \frac{m^2 - 16}{m^2 + 8m + 16}$

15. A triangle has base
$$\sqrt{6}$$
 and height $(3 - \sqrt{24})$. What is the area of the triangle?

16. Simplify the expression:
$$6^{-5} \times \frac{6^3}{(6^4)^{-8}}$$
.

17. Simplify fully,
$$\frac{2x+1}{6x^2+x-2} - \frac{2x}{8x^2-4x}$$
.

18. Express the function in vertex for by completing the square: $f(x) = x^2 - 6x + 7$.

Exponential Functions:

19. Evaluate: (a)
$$8^{\frac{2}{3}} - 81^{\frac{3}{4}} + 4^{2}$$

(b) $16^{\frac{3}{4}} - 49^{\frac{1}{2}}$

20. Solve
$$9^{3x+7} = 27^{x-5}$$

21. Simplify:
(a)
$$\sqrt{12}$$
 (b) $2\sqrt{75} - 5\sqrt{108}$

- 22. Evaluate $\left(\frac{27}{729}\right)^{\frac{2}{3}}$ (leave as fraction, no decimals).
- 23. Simplify: $\sqrt{\sqrt{256m^8}}$.

Trigonometric Functions:

- (a) $2\cos^2\theta + 3\cos\theta 2 = 0$ for $0^\circ \le \theta \le 360^\circ$.
- (b) $6\sin^2 x \sin x 1 = 0, \ 0^\circ \le \theta \le 360^\circ.$
- 25. Prove:

(a)
$$\tan x + \frac{1}{\tan x} = \frac{1}{\sin x \cos x}$$

(b)
$$\frac{\sin^2 x}{1 - \cos x} = 1 + \cos x$$

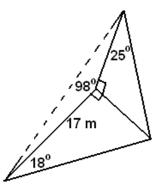
(c)
$$\cos x \sin x = 1$$

(c)
$$\frac{\cos x \sin x}{1 - \cos^2 x} = \frac{1}{\tan x}$$

26. Determine any value for x, such that $\cos 60^\circ = \sin x$

- 27. Convert sin 210° to an **exact** trigonometric value.
- 28. Convert cos 315° to an **exact** trigonometric value.
- 29. Determine the value of θ to the nearest degree if $\csc \theta = 1.75$.
- 30. Determine the value of θ to the nearest degree if $\cot \theta = 0.89$.
- 31. Solve the trigonometric equations (answer: nearest degree): (a) $2\sin\theta\cos\theta + \sin\theta = 0$, where: $0^{\circ} \le \theta \le 360^{\circ}$
 - (b) $\sqrt{2} \sec x 3 = 0$, where: $0^\circ \le \theta \le 360^\circ$
 - (c) $6 \tan x + 2 = 3 \tan x$ for $0^{\circ} \le x \le 360^{\circ}$.
 - (d) $4\cos x + 3 = 5$, where: $0^{\circ} \le \theta \le 360^{\circ}$.
- 32. Find the length of the dashed line. (Nearest whole number)
- 33. For the given function: $y = -2\sin(3\theta + 120^\circ) + 6$ for $0^\circ \le \theta \le 270^\circ$, state the following:
 - (a) amplitude (b) period
 - (c) phase shift (d) vertical shift
 - (e) domain (f) range
- 34. Sketch $y = -2\cos(4x) + 1$ for one complete cycle ($0^{\circ} \le x \le 360^{\circ}$)

	 				[[
 -	 			 			 			 			
			_						_				
		9	0 ⁰		18	0°		27	70 ⁰		36	60 ⁰	
 	 	9	0°	 	18	0 ⁰	 	27	70 [°]	 	36	60°	
 	 	9	0°	 	18	0 ⁰	 	27	70 [°]	 	36	60 ⁰	


35. Sketch $y = 3\sin\left(\frac{1}{2}x\right) - 1$ for one complete cycle $(0^\circ \le x \le 360^\circ)$

		9	0°		18	0 ⁰		27	70 ⁰		36	60 ⁰	
L		-	-					i					
 	 		_	 			 			 			
 = 	 			 			 			 			

Discrete Functions:

36. Consider the arithmetic series 4 + 9 + 14 + ... + 199

- (a) Calculate the number of terms in the series.
- (b) Calculate the sum of the series.
- 37. In an arithmetic series of 28 terms, the 7th term is 41 and the 18th term is 96.
 (a) Find the sum of the series.
 - (b) Find the first three terms
- 38. Given the series: 2 4 + 8 ... + 512.
 - (a) Calculate the number of terms in the series.
 - (b) Calculate the sum of the series.

