Name: \qquad

Course End Review
 Functions and Relations

Introduction to Functions:

1. Given: $f(x)=2 x+15$ and $g(x)=3 x^{2}-2 x+1$
(a) Determine $f(-2)+g(1)-f(0)$
(b) Determine $g[f(x)]$
2. State the domain and range:
(a)
$H(x)=2(x-5)^{2}-3$
(b)

3. A relation f is $f(x)=2 x^{2}-6 x$, evaluate $f(-2)$.
4. Determine the inverse to the function $f(x)=4 x-2$?
5. Find the inverse functions for:
(a) $\quad f(x)=\frac{x+3}{2}$
(b) $g(x)=4(x-3)^{2}+1$
6. Given $f(x)=-2(x+5)^{2}+3$, what is $f^{-1}(1)$?
7. What transformations that are used to graph the function:
(a) $g(x)=-5 \sqrt{4(x-2)}+7$.
(b) $\quad y=\frac{1}{3} f\left[-\frac{2}{5}(x+4)\right]-6$
8. The function $f(x)$ is shown in the following graph:
(a) State the domain
(b) State the range
(c) Determine the value of $f(3)$.
(d) Determine the value(s) of $f^{-1}(1)$.

9. Determine the equation of a parabola with a vertex of $(3,-5)$ and goes through the point (-4, 10).

Quadratic and Rational Expressions:

10. When a ball is tossed into the air, the height, h, in meters, of the ball after t seconds is modelled by, $h=30 t-5 t^{2}$, where h is the height of the ball in meters and t is the time in the air in seconds.
(a) What is the ball's maximum height.
(b) How long does it take to complete its full flight path?
11. Solve $(2 x-5)(2 x-5)=0$ (leave in fraction form).
12. Solve for $-4(x+3)^{2}+7=0$ (two decimal places).
13. Simplify:
(a) $\frac{3 x+1}{x^{2}+3 x+2}-\frac{4 x}{x^{2}+5 x+6}+\frac{5 x-3}{x^{2}+4 x+3}$
(b) $\frac{x^{2}-3 x-4}{x^{2}+5 x+6} \times \frac{x^{2}-4}{x^{2}-2 x-3} \div \frac{x^{2}-4 x}{(x+3)^{2}}$
14. Simplify and state all the restrictions: $\frac{m^{2}-4 m-5}{5 m^{2}-25 m} \times \frac{15 m^{2}}{m^{2}+3 m+2} \div \frac{m^{2}-16}{m^{2}+8 m+16}$
15. A triangle has base $\sqrt{6}$ and height $(3-\sqrt{24})$. What is the area of the triangle?
16. Simplify the expression: $6^{-5} \times \frac{6^{3}}{\left(6^{4}\right)^{-8}}$.
17. Simplify fully, $\frac{2 x+1}{6 x^{2}+x-2}-\frac{2 x}{8 x^{2}-4 x}$.
18. Express the function in vertex for by completing the square: $f(x)=x^{2}-6 x+7$.

Exponential Functions:

19. Evaluate: (a) $8^{\frac{2}{3}}-81^{\frac{3}{4}}+4^{2}$
(b) $16^{\frac{3}{4}}-49^{\frac{1}{2}}$
20. Solve $9^{3 x+7}=27^{x-5}$
21. Simplify:
(a) $\sqrt{12}$
(b) $2 \sqrt{75}-5 \sqrt{108}$
22. Evaluate $\left(\frac{27}{729}\right)^{\frac{2}{3}}$ (leave as fraction, no decimals).
23. Simplify: $\sqrt{\sqrt{256 m^{8}}}$.

Trigonometric Functions:

24. Solve:
(a) $2 \cos ^{2} \theta+3 \cos \theta-2=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(b) $6 \sin ^{2} x-\sin x-1=0,0^{\circ} \leq \theta \leq 360^{\circ}$.
25. Prove:
(a) $\tan x+\frac{1}{\tan x}=\frac{1}{\sin x \cos x}$
(b) $\frac{\sin ^{2} x}{1-\cos x}=1+\cos x$
(c) $\frac{\cos x \sin x}{1-\cos ^{2} x}=\frac{1}{\tan x}$
26. Determine any value for x, such that $\cos 60^{\circ}=\sin x$
27. Convert $\sin 210^{\circ}$ to an exact trigonometric value.
28. Convert $\cos 315^{\circ}$ to an exact trigonometric value.
29. Determine the value of θ to the nearest degree if $\csc \theta=1.75$.
30. Determine the value of θ to the nearest degree if $\cot \theta=0.89$.
31. Solve the trigonometric equations (answer: nearest degree):
(a) $2 \sin \theta \cos \theta+\sin \theta=0$, where: $0^{\circ} \leq \theta \leq 360^{\circ}$
(b) $\sqrt{2} \sec x-3=0$, where: $0^{\circ} \leq \theta \leq 360^{\circ}$
(c) $6 \tan x+2=3 \tan x$ for $0^{\circ} \leq x \leq 360^{\circ}$.
(d) $4 \cos x+3=5$, where: $0^{\circ} \leq \theta \leq 360^{\circ}$
32. Find the length of the dashed line. (Nearest whole number)

33. For the given function: $y=-2 \sin \left(3 \theta+120^{\circ}\right)+6$ for $0^{\circ} \leq \theta \leq 270^{\circ}$, state the following:
(a) amplitude
(b) period
(c) phase shift
(d) vertical shift
(e) domain
(f) range
34. Sketch $y=-2 \cos (4 x)+1$ for one complete cycle $\left(0^{\circ} \leq x \leq 360^{\circ}\right)$

35. Sketch $y=3 \sin \left(\frac{1}{2} x\right)-1$ for one complete cycle $\left(0^{\circ} \leq x \leq 360^{\circ}\right)$

Discrete Functions:

36. Consider the arithmetic series $4+9+14+\ldots+199$
(a) Calculate the number of terms in the series.
(b) Calculate the sum of the series.
37. In an arithmetic series of 28 terms, the $7^{\text {th }}$ term is 41 and the $18^{\text {th }}$ term is 96 .
(a) Find the sum of the series.
(b) Find the first three terms
38. Given the series: $2-4+8-\ldots+512$.
(a) Calculate the number of terms in the series.
(b) Calculate the sum of the series.
