Warm - up #1

Determine the equation of a parabola that

- a. has zeros 5 and -2 and goes through (1,36)
- b. has a vertex of (4, -5) and goes through (7, -23)

Warm - Up #1 - Solution

Determine the equation of a parabola that

- a. has zeros 5 and -2 and goes through (1,36)
- b. has a vertex of (4, -5) and goes through (7, -23)

a.,
$$f(x) = 3(x-5)(x+2)$$

b., $-23 = a(7-4)^2 - 5$
 $-23 = a(3)^2 - 5$
 $-23 = 9a$
 $-18 = 9a$
 $-2 = a$
 $-2 = a$
 $-18 = a$
 $-2 = a$
 $-2 = a$
 $-2 = a$
 $-2 = a$

Warm - Up #2

Determine the equation of a parabola that has zeros $\sqrt{3}$, $-2\sqrt{3}$ and goes through $(3\sqrt{3}, 90)$ verify your answer by graphing with technology.

```
Warm - up #2
 Determine the equation of a parabola that
   has zeros \sqrt{3}, - 2\sqrt{3} and goes through (3\sqrt{3}, 90)
    verify your answer by graphing with technology.
           f(x) = a(x-s)(x-t)
           f(x) = \alpha (x-\sqrt{3})(x+2\sqrt{3})
           90 = a(3\sqrt{3}-\sqrt{3})(3\sqrt{3}+2\sqrt{3})
            90 = a (2\overline{3})(5\overline{3})
            90 = a(10.3)
            90 = 30a
               3 = a
    f(x) = 3(x-\sqrt{3})(x+2\sqrt{3})
                                              "3.√3,90)
                              text
       \mathbf{f1}(x)=3\cdot(x-\sqrt{3})\cdot(x+2\cdot\sqrt{3})
10
```

pg 192 Try On Your Own #2 from Lesson 3

- 10. A tunnel with a parabolic arch is 12 m wide. If the height of the arch 4 m from the left edge is 6 m, can a truck that is 5 m tall and 3.5 m wide pass through the tunnel? Justify your decision.
 - Is it wise to drive down the middle of a tunnel?

Turn on the Video

Linear - Quadratic Systems

Learning Goal

- Find the point(s) of intersection of a linear-quadratic system
- Find the number of POI of a linear-quadratic system

Recall Linear Systems from Grade 10

How many times can two lines intersect?

How did you find the intersection point?

$$y = -2x + 11$$
 and $y = 3x - 4$

$$-2x + 11 = 3x - 4$$

$$15 = 5x$$

$$3 = x$$

Now ... Think Quadratic and Linear Systems How many times can a parabola and a line intersect?

How do you solve for the intersection points.

Determine using algebra ... the Points of Intersection between

$$f(x) = x^2$$
 and $g(x) = x + 2$

First graph it ...

$$x^2 = x + 2$$

$$x^2 - x - 2 = 0$$

$$(x-2)(x+1)=0$$

$$x = 2$$
 $x = -1$

$$f(2) = 2^{2}$$
 $f(-1) = (-1)^{2}$
= 4 = 1
(2,4) . (-1,1)

$$f(-1) = (-1)^2$$

$$(-1,1)$$

Pause the video and try on your own...

Determine using algebra ... the Points of Intersection between

$$f(x) = x^2 + 1$$
 and $g(x) = 2x + 4$

Pause the video and try on your own...

Determine using algebra ... the Points of Intersection between

$$f(x) = x^2+1$$
 and $g(x) = 2x + 4$
 $f(x) = g(x)$

$$x^{2}+1 = 2x + 4$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1)=0$$

$$f(3) = 3^{2} + 1$$
 $f(-1) = (-1)^{2} + 1$
= 9 + 1 = 1 + 1
= 10 = 2

Determine using algebra ...

the number of points of intersection of the quadratic and linear functions.

$$f(x) = 3x^2 + 12x + 14$$
 $g(x) = 2x - 8$

1. Set equations equal to each other.

$$3x^2 + 12x + 14 = 2x - 8$$

2. Move everything to one side.

$$3x^2 + 10x + 22 = 0$$

3. Use the discriminant to determine number of solutions.

$$= 100 - 264$$

$$=-263$$
 \longrightarrow ho answer

NO POI

Set the Plan and then do ...

Solve by Algebra

Adam has decided to celebrate his birthday by going skydiving. He loves to freefall so he will wait for some time before opening his parachute.

*His height after jumping from the airplane during the freefall can be modelled by the quadratic function $h_1 = -4.9t^2 + 5500$, where t is the time in seconds and h(t) is the height above the ground, in metres, t seconds after jumping out.

*After he releases his parachute, he begins falling at a constant rate. His height above the ground can be modelled by the linear function $h_2 = -5t + 4500$.

How long after jumping out of the airplane did Adam release his parachute?

How high was he at that time?

Plan

Draw a graph

Find point of intersection (t, h)

Set the Plan and then do ...

The height of a baseball, after it is tossed out of a window is modelled by the function $\ensuremath{\mathsf{I}}$

$$h(t) = -5t^2 + 20t + 15$$

where t is the time since it was tossed in seconds and h is the height in metres.

A boy shoots at the baseball with a paintball gun. He shoots at the exact same time as the baseball is thrown. The trajectory of the paintball is given by the function

$$g(t) = 3t + 3$$

where t is the time since it was shot in seconds and g is the height in metres.

Will the paintball hit the baseball?

If so, when? At what height will the baseball be?

Plan

Draw a graph

Find intersection point

Try On Your Own

pg 198 # 4ab, 8-11 p. 186 #14

- **4.** Determine the point(s) of intersection of each pair of functions.
- **a**) $f(x) = -2x^2 5x + 20, g(x) = 6x 1$
 - b) $f(x) = 3x^2 2$, g(x) = x + 7
 - c) $f(x) = 5x^2 + x 2$, g(x) = -3x 6
 - d) $f(x) = -4x^2 2x + 3$, g(x) = 5x + 4
- **8.** Determine the value of k such that g(x) = 3x + k intersects the quadratic function $f(x) = 2x^2 5x + 3$ at exactly one point.
- **9.** Determine the value(s) of *k* such that the linear function g(x) = 4x + k does not intersect the parabola $f(x) = -3x^2 x + 4$.
- 10. A daredevil jumps off the CN Tower and falls freely for several seconds before
- releasing his parachute. His height, h(t), in metres, t seconds after jumping can be modelled by

 $h_1(t) = -4.9t^2 + t + 360$ before he released his parachute; and $h_2(t) = -4t + 142$ after he released his parachute.

How long after jumping did the daredevil release his parachute?

- 11. A quadratic function is defined by $f(x) = 3x^2 + 4x 2$. A linear function
- is defined by g(x) = mx 5. What value(s) of the slope of the line would make it a tangent to the parabola?
- **14.** If $f(x) = x^2 6x + 14$ and $g(x) = -x^2 20x k$, determine
- the value of k so that there is exactly one point of intersection between the two parabolas.

Try On Your Own - Solutions pg 198 # 4ab, 8-11,14 4. Determine the point(s) of intersection of each pair of functions. (a) $f(x) = -2x^2 - 5x + 20, g(x) = 6x - 1$ (b) $f(x) = 3x^2 - 2, g(x) = x + 7$ (c) $f(x) = 5x^2 + x - 2, g(x) = -3x - 6$ (d) $f(x) = -4x^2 - 2x + 3, g(x) = 5x + 4$ (e) f(x) = g(x) f(x) = g(

8. Determine the value of k such that g(x) = 3x + k intersects the quadratic function $f(x) = 2x^2 - 5x + 3$ at exactly one point. f(x) = g(x) $2x^2 - 5x + 3 = 3x + 1$ $2x^2 - 5x - 3x + 3 - 1 = 0$ $2x^2 - 8x + 3 - 1 = 0$ $2x^2 - 8x + 3 - 1 = 0$ $2x^2 - 8x + 3 - 1 = 0$ $2x^2 - 8x + 3 - 1 = 0$ 3x + k 4x + k 4

10. A daredevil jumps off the CN Tower and falls freely for several seconds before \triangle releasing his parachute. His height, h(t), in metres, t seconds after jumping can be modelled by

 $h_1(t) = -4.9t^2 + t + 360$ before he released his parachute; and

 $h_2(t) = -4t + 142$ after he released his parachute.

How long after jumping did the daredevil release his parachute?

Time cant be negative
$$\frac{1}{2}$$

day 4 - Linear-Quadratic Systems - Online - ANS.notebook	May 1

F11SB_187[1].pdf