The Ferris Wheel

The height above the ground of a rider on a Ferris wheel can be modelled by $h(x)=25 \sin (x-90)^{\circ}+27$, where $h(x)$ is the height, in metres, and x is the angle, in degrees, the rider has rotated from the boarding position.

Draw a picture of the Ferris Wheel's motion below ,

Now graph on Nspire, adjusting window settings accordingly.
Answer the following questions from your NSpire Graph
a) Trace to determine the height of the rider when $x=30^{\circ}$ \qquad
b) Trace to determine the angle when $h(x)=40 \mathrm{~m}$

Tides in the Bay

The depth of water in a bay varies according to the tides. A pole is placed in the water to measure the water's depth. At high tide (midnight) the water at the pole is 12 m deep. At low tide the water at the pole is 2 m deep. Assume the tides run in a 12 hour sinusoidal cycle.

Create a model

Graph the Height vs Time on the graph provided. Create a sinusoidal model.

a) How deep is the water at the pole at 3:00 am.
b) How deep is the water at the pole at $4: 45 \mathrm{pm}$.
c) At what time during the day will the depth of the water be 10 m ?

