

Interpreting Sinusoidal Functions

Learning Goals

- describe the various terms related to periodic motion
- model the motion of various objects with a sinusoidal function

Draw a sketch of the motion and determine if it is periodic, sinusoidal, both or neither.

- a. spring bounces up and down
- b. pebble stuck in the tire of a car
- c. pendulum swinging

Turn on the video

 $y = \sin \theta$ and $y = \cos \theta$ can be used to model situations that involve repetative motions.

Amplitude - depends on the situation

- radius of a circle

1 cycle - corresponds to 1 period

Speed - can be calculated by

circumference of a

v = <u>distance</u> = <u>circular rotation</u>

time period

distance is

not (inear

swimmer

Pause the video -- Try on Your Own #1

2. Nolan is jumping on a trampoline. The graph shows how high his feet are above the ground.

- a) How long does it take for Nolan's jumping to become periodic? What is happening during these first few seconds?
- b) What is the period of the curve? What does period mean in this context?
- c) Write an equation for the axis of the periodic portion of the curve.
- d) What is the amplitude of the sinusoidal portion of the curve? What does amplitude mean in this context?

The End of the Video - Complete the following ...

Try On Your Own #2

4. An oscilloscope hooked up to an AC (alternating current) circuit shows a sine curve on its display:

- a) What is the period of the function?
- b) What is the equation of the axis of the function?
- c) What is the amplitude of the function?
- d) State the units of measure for each of your answers above.

Try On Your Own #2 - Solution

4. An oscilloscope hooked up to an AC (alternating current) circuit shows a sine curve on its display:

- a) What is the period of the function?
 - What is the equation of the axis of the function?
- What is the amplitude of the function?
- d) State the units of measure for each of your answers above.

y=0 | Amplitude a=4.5

Try On Your Own #3

9. The graph shows John's height above the ground as a function of time as he rides a Ferris wheel.

- a) What is the diameter of the Ferris wheel?
- b) What is John's initial height above the ground?
- c) At what height did John board the Ferris wheel?
- d) How high above the ground is the axle on the wheel?

Try On Your Own #3 - Solution

9. The graph shows John's height above the ground as a function of time as he rides a Ferris wheel.

- a) What is the diameter of the Ferris wheel?
- b) What is John's initial height above the ground?
- c) At what height did John board the Ferris wheel? 12
- d) How high above the ground is the axle on the wheel? / 2

Try On Your Own #4

- **6.** Sketch a height-versus-time graph of the sinusoidal function that models each situation. Draw at least three cycles. Assume that the first point plotted on each graph is at the lowest possible height.
 - a) A Ferris wheel with a radius of 7 m, whose axle is 8 m above the ground, and that rotates once every 40 s
 - b) A water wheel with a radius of 3 m, whose centre is at water level, and that rotates once every 15 s
 - c) A bicycle tire with a radius of 40 cm and that rotates once every 2 s
 - d) A girl lying on an air mattress in a wave pool that is 3 m deep, with waves 0.5 m in height that occur at 7 s intervals

Try On Your Own #4 - Solution

P. 371 #6 - Sketch the Graphs

- 6. Sketch a height-versus-time graph of the sinusoidal function that models each situation. Draw at least three cycles. Assume that the first point plotted on each graph is at the lowest possible height.
 - a) A Ferris wheel with a radius of 7 m, whose axle is 8 m above the ground, and that rotates once every 40 s

b) A water wheel with a radius of 3 m, whose centre is at water level, and that rotates once every 15 s

c) A bicycle tire with a radius of 40 cm and that rotates once every 2 s

d) A girl lying on an air mattress in a wave pool that is 3 m deep, with waves 0.5 m in height that occur at 7 s intervals

Optional Additional Practise

pg 371 # 1, 4, 14

see text book for answers

1. Olivia was swinging back and forth in front of a motion detector when the detector was activated. Her distance from the detector in terms of time can be modelled by the graph shown.

- a) What is the equation of the axis, and what does it represent in this situation?
- **b)** What is the amplitude of this function?
- c) What is the period of this function, and what does it represent in this situation?
- d) How close did Olivia get to the motion detector?
- e) At t = 7 s, would it be safe to run between Olivia and the motion detector? Explain your reasoning.
- f) If the motion detector was activated as soon as Olivia started to swing from at rest, how would the graph change? (You may draw a diagram or a sketch.) Would the resulting graph be sinusoidal? Why or why not?

- Evan's teacher gave him a graph to help him understand the speed at which a tooth on a saw blade travels. The graph shows the height of one tooth on the circular blade relative to the cutting surface relative to time.
 - a) How high above the cutting surface is the blade set?
 - b) What is the period of the function, and what does it represent in this situation?
 - c) What is the amplitude of the function, and what does it represent in this situation?
 - d) How fast is a tooth on the circular cutting blade travelling in inches per second?

- 14. How many pieces of information do you need to know to sketch a sinusoidal
- function. What pieces of information could they be?

BU - C3 - day 9 - Interpreting Sinusoidals - Online - ANS.notebook	April 21, 202

Unit Circle copy.gsp

Unit Circle Functions .gsp

Desktop (create shortcut).DeskLink

MCR3U - Page 363 #5.tns

sinusoidal transformations.pptx