3.6 Zeros of Quadratic Functions

Determining the Number of Zeros

Factored Form $f(x)=a(x-r)(x-s)$
If the quadratic is expressed in factored form then there are two real roots.
Vertex Form $f(x)=a(x-h)^{2}+k$
Consider the following graphs: What are the values of a ? k ?

One root

Two roots

No real roots

Summary:

$a \neq 0$ and $k=0$	One root	
$a>0$ and $k>0$	No real roots	Hint: a and k are same sign
$a<0$ and $k<0$	Two roots	Hint: a and k are opposite signs
$a>0$ and $k<0$		sign
$a<0$ and $k>0$		

Standard Form $f(x)=a x^{2}+b x+c$
Instead of factoring or completing the square we can look to the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The expression $b^{2}-4 a c$ is called the DISCRIMINANT.
What happens if the discriminant is negative?

$b^{2}-4 a c=0$	One root
$b^{2}-4 a c>0$	Two real roots
$b^{2}-4 a c<0$	No real roots

