Warm up #1 - Try On Your Own

Find the zeros.

$$(x-5)(2x-1) = 0$$

$$x^2 - 25 = 0$$

$$x^2 - 2x = 12$$

Warm up #1 - On Your Own

Find the zeros.

$$x^{2}-25 = 0$$

$$x^{2}-2x = 12$$

$$\sqrt{x} = 25$$

$$\sqrt{x} = \sqrt{25}$$
Doesn't factor
$$x = \pm 5$$

$$x = -5 \pm \sqrt{5} = 4ac$$

$$x = 2 \pm \sqrt{52}$$

$$x = 2 \pm \sqrt{52}$$

$$x = 2 \pm \sqrt{52}$$

$$x = 2 \pm \sqrt{13}$$

$$x = 1 \pm \sqrt{13}$$

Warm up #2 - Try On Your Own

The demand function for a new automotive part is p(x)=-0.5x+7.8, where p is the price in dollars and x is the quantity sold in thousands. The new part can be manufactured by three different processes, A, B, or C. The cost function for each process is given by:

A
$$C(x)=4.6x+5.12$$

B
$$C(x)=3.8x+5.12$$

C
$$C(x)=5.3x+3.8$$

Use the TI-Nspire to investigate the break-even quantities. Which process would you recommend to the company?

BIG HINT provided on the next page.

BIG Hint...

Revenue = (Price)(# sold)

Profit = Revenue - Cost

A)
$$p(x)=-0.5x+7.8$$
, $C(x)=4.6x+5.12$

$$P(x) = (-0.5x + 7.8)(x) - (4.6x + 5.12)$$

$$= -0.5 x^{2} + 7.8 x - 4.6 x - 5.12$$

$$= -0.5 x^{2} + 3.2 x - 5.12$$

Turn on the Video

The Number of Zeros in a Quadratic Function

Learning goal

- determine the number of zeros of a quadratic function

We can't always graph everything.

Algebraic Methods:

- 1. Factored Form
- 2. Vertex Form
- 3. Standard form Discriminant

If you have a <u>printer</u> a Note has been provided on the website.

Factored Form
$$f(x) = a(x-r)(x-s)$$

If the quadratic is expressed in factored form then there are

$$f(x) = 3(x-5)(x+1)$$

$$2 \text{ different } \longrightarrow 2 \text{ zeros}$$

$$f(x) = 3(x-5)(x-5)$$

same
$$\longrightarrow 1$$
 zero

$$f(x) = 3(x-5)^2 = 3(x-5)(x-5)$$

Note: If there are no zeros, we can't use factored form.

Vertex Form $f(x) = a(x-h)^2 + k$

Consider the following graphs: What are the values of a? k?

Summary

$a \neq 0$ and $k = 0$	One root	
a > 0 and $k > 0$	No real roots	Hint: a and k are same
a < 0 and $k < 0$		sign
a > 0 and $k < 0$	Two roots	Hint: a and k are opposite
a < 0 and $k > 0$		signs

Standard Form: $f(x) = ax^2 + bx + c$

The **discriminant** is $b^2 - 4ac$

Value of $b^2 - 4ac$	Number of Zeros	
$b^2 - 4ac > 0$	2	
$b^2 - 4ac = 0$	1	
$b^2 - 4ac < 0$	0	

$$x = -b + \sqrt{b^2 - 4ac}$$

$$\frac{2+\sqrt{9}+3}{2} = \frac{2+3}{2} \rightarrow 2 \text{ zeros}$$

$$\frac{2 \pm \sqrt{0}}{2} = \frac{2 \pm 0}{2} \rightarrow 1 \text{ zero}$$

$$\frac{2 \pm \sqrt{0}}{2} = \frac{2 \pm 0}{2} \rightarrow 1 \text{ zero}$$

$$\frac{2 \pm \sqrt{-16}}{2} = \text{not a real} \rightarrow \text{No}$$

$$\frac{2 \pm \sqrt{-16}}{2} = \text{result} \rightarrow \text{zeros}$$

This is the end of the video

Do the Try on your own...

Textbook questions are always Optional

On Your Own #1

Example:

Predict how many zeros (i.e. f(x) = 0) each of the following functions have.

$$f(x) = (x-1)(x-10)$$
$$f(x) = 0.5x(x+4)$$
$$f(x) = 2(x+3)^{2}$$
$$f(x) = -3(x-2)(x+7)$$

Example:

Predict how many zeros (i.e. f(x) = 0) each of the following functions have.

$$f(x) = (x-1)(x-10)$$

$$f(x) = 0.5x(x+4)$$

$$f(x) = 2(x+3)^{2}$$

$$f(x) = -3(x-2)(x+7)$$

On Your Own #2

Example:

Predict how many zeros (i.e. f(x) = 0) each of the following functions have.

$$f(x) = 2(x+3)^{2} - 7$$

$$f(x) = 2(x+3)^{2} + 7$$

$$f(x) = 2(x+3)^{2}$$

$$f(x) = -\frac{1}{2}(x-5)^{2} + 10$$

Example:

Predict how many zeros (i.e. f(x) = 0) each of the following functions have.

$$f(x) = 2(x+3)^{2} - 7$$

$$f(x) = 2(x+3)^{2} + 7$$

$$f(x) = 2(x+3)^{2}$$

$$f(x) = -\frac{1}{2}(x-5)^{2} + 10$$

On Your Own #3

Example:

Use the discriminant to determine the number of zeroes.

$$f(x) = -2x^{2} + 12x - 18$$
$$g(x) = 2x^{2} + 6x - 8$$
$$h(x) = x^{2} - 4x + 7$$

Example:

Use the discriminant to determine the number of zeroes.

$$f(x) = -2x^{2} + 12x - 18$$

$$g(x) = 2x^{2} + 6x - 8$$

$$h(x) = x^{2} - 4x + 7$$

$$D = (6)^{2} - 4(2)(-8)$$

$$D = (-4)^{2} - 4(1)(7) = 100$$

$$= 16 - 28$$

$$= \text{Negative}$$

$$\text{No ne}$$

On Your Own #4

What is the value of k that ensures that $f(x) = kx^2 - 4x + 6$ has NO zeros?

and verify by graphing with technology

On Your Own #4 - HINT

What is the value of k that ensures that $f(x) = kx^2 - 4x + 6$ has NO zeros?

discriminant must be negative

On Your Own #4

What is the value of k that ensures that $f(x) = kx^2 - 4x + 6$ has NO zeros?

discriminant must be negative

we can solve inequalities like equations EXCEPT if we multiply or divide by a negative we need to change the direction of the sign.

16-16-24K < 0-16 -24K < -16

$$\frac{-24K}{-24} > \frac{-16}{-24}$$

since we are dividing by -24 the less than becomes a greater than

and verify by graphing with technology

if k = 2/3 only one zero

if k > 2/3, I chose k = 1, NO zeros

Example:

Determine the value of k so that f(x) has only <u>one</u> zero.

$$f(x) = x^2 - kx + 3$$

and verify by graphing with technology

On Your Own #5 - HINT

Example:

Determine the value of k so that f(x) has only <u>one</u> zero.

$$f(x) = x^2 - kx + 3$$

discriminant must be zero

A market researcher predicted that the profit for the first year of a business would be, $P(x) = -0.3x^2 + 3x - 15$ Will it be possible for the business to <u>break even</u> in its first year?

What part of the parabola are you looking for?

A market researcher predicted that the profit for the first year of a business would be, $P(x) = -0.3x^2 + 3x - 15$

Will it be possible for the business to break even in its first year?

$$6^{2} - 4ac$$

$$= 3^{2} - 4(-0.3)(-15)$$

discriminant

zeros

∴ it is always loosing money

∴ it is not possible to break even

On Your Own #6

A market researcher predicted that the profit for the first year of a business would be, $P(x) = -0.3x^2 + 3x - 15$

Will it be possible for the business to break even in its first year?

You can graph to check as well

no zeros

Optional Extra Practise

pg 185 # 4ab, 5ab, 6, 7, 8, 9

- 4. Determine the number of zeros. Do not use the same method for all
- K four parts.

a)
$$f(x) = -3(x-2)^2 + 4$$

c)
$$f(x) = 4x^2 - 2x$$

a)
$$f(x) = -3(x-2)^2 + 4$$
 c) $f(x) = 4x^2 - 2x$
b) $f(x) = 5(x-3)(x+4)$ d) $f(x) = 3x^2 - x + 5$

d)
$$f(x) = 3x^2 - x + 5$$

- 5. For each profit function, determine whether the company can break even. If
- A the company can break even, determine in how many ways it can do so.

a)
$$P(x) = -2.1x^2 + 9.06x - 5.4$$

b)
$$P(x) = -0.3x^2 + 2x - 7.8$$

c)
$$P(x) = -2x^2 + 6.4x - 5.12$$

d)
$$P(x) = -2.4x^2 + x - 1.2$$

- **6.** For what value(s) of k will the function $f(x) = 3x^2 4x + k$ have one x-intercept?
- 7. For what value(s) of k will the function $f(x) = kx^2 4x + k$ have no zeros?
- **8.** For what values of k will the function $f(x) = 3x^2 + 4x + k = 0$ have no zeros? one zero? two zeros?
- **9.** The graph of the function $f(x) = x^2 kx + k + 8$ touches the x-axis at one point. What are the possible values of k?

- 3. a) 2 zeros
- b) no zeros c) 1 zero
- d) 1 zero

- d) no zeros
- 4. a) 2 zeros
 b) 2 zeros
 c) 2 zeros
 d) no
 5. a) 2 break-even points
 b) Cannot break even
 c) 1 break-even point
 d) Cannot break even

- **6.** $k = \frac{4}{3}$
- 7. k < -2 or k > 2
- **8.** $k > \frac{4}{3}, k = \frac{4}{3}, k < \frac{4}{3}$
- **9.** k = -4 or 8
- 10. No, resulting quadratic has no solutions.

Lesson 3.6, pp. 185-186

- 1. a) vertex (0, -5), up, 2 zeros b) vertex (0, 7), down, 2 zeros c) vertex (0, 3), up, no zeros f) vertex (4, -2), up, 2 zeros c) 2 zeros b) 2 zeros c) 2 zeros d) 1 zero

 3. a) 2 zeros b) 2 zeros c) 2 zeros d) 1 zero

 4. a) 2 zeros b) 2 zeros c) 2 zeros d) no zeros

 5. a) 2 break-even points c) 1 break-even point b) Cannot break even

 4. d) vertex (-2, 0), up, 1 zero e) vertex (-3, -5), down, no zeros c) 2 zeros d) 1 zero

 5. 1 break-even point d) Cannot break even

- 7. k < -2 or k > 2
- **8.** $k > \frac{4}{3}, k = \frac{4}{3}, k < \frac{4}{3}$
- 9. k = -4 or 8

U - C3 - day 5 - Discriminant - Online - ANS.notebook	April 09, 202	