Solving Quadratic Equations

Learning Goals

- solve quadratic equations five different ways
- solve real world problems by finding the zeros

Warm - Up - Try on Your Own

- Use Graphing Technology

Janice sells T-shirts. Her profit P is modelled by $P(x)=-x^2+22x-40$, where x represents the number of T-shirts sold.

Find the breakeven point.

What part of the parabola are you looking for?

Janice sells T-shirts. Her profit P is modelled by $P(x)=-x^2+22x-40$, where x represents the number of T-shirts sold.

Find the breakeven point.

What part of the parabola are you looking for?

Definition of breakeven (Entry 1 of 2)

: the point at which cost and income are equal and there is neither profit nor loss

So Profit = \$0, we need to find zeros.

Video starts here

You should have done the Warm-Up first

There are 5 ways to find the zeros.

- 1. Graph by hand
- 2. Graphing calculator
- 3. Factoring
- 4. Quadratic Formula
- 5. Vertex Form —→ algebra

1. Graph by Hand

- make a table of values
- graph
- read off zeros
- 2. Graphing calculator see Warm-Up

- trace

OR

- 🔧 or menu
 - analyze graph
 - find zeros

3. Factor

$$P(x) = -x^2 + 22x - 40$$

"set P(x) to zero"

factor out negative sign

actor out negative sign
$$0 = -x^2 + 22x - 40$$

$$0 = -(x^2 - 22x + 40)$$

$$0 = -(x - 20)(x - 2)$$

$$0 = -(x - 20)(x - 2)$$

$$x - 20 = 0$$

$$x = 20$$

$$x = 2$$

4. Quadratic Formula - Exact Roots

$$M(x) = x^{2} - 4x - 6 \text{ "exact roots"}$$

$$\alpha = |b = -4| c = -6$$

$$x = -\frac{b}{\sqrt{b^{2} \cdot 4ac}}$$

$$x = \frac{4 \pm \sqrt{-4} \cdot -4(x - 6)}{2a}$$

$$x = \frac{4 \pm \sqrt{16 + 24}}{2}$$

$$x = \frac{4 \pm \sqrt{16}}{2}$$

$$x = \frac{4 \pm \sqrt{10}}{2}$$

$$x = \frac{4 \pm 2\sqrt{10}}{2}$$

$$x = 2\sqrt{10}$$

$$x =$$

5. Vertex Form

$$x^{2} - 49 = 0$$

$$x^{2} - 49 = 0$$

$$x^{2} - 49 = 0$$

$$(x - 7)(x + 7) = 0$$

$$x = \pm 7$$

$$x = \pm 7$$

$$x = 7$$

$$x = 7$$

$$x = 7$$

$$(x-1)^{2} - 25 = 0$$

$$(x-1)^{2} - 25 + 25 = 0 + 25$$

$$(x-1)^{2} = 25$$

$$(x-1)^{2} = \frac{1}{2}5$$

$$x-1 = \frac{1}{5}5$$

$$x-1=5$$

$$x-1+1=5+1$$

$$x_{1}=6$$

$$x_{2}=-4$$

1st two are Grade 10 but sometimes we forget how easy this can be

Third ... !!!

convert to
$$(x^2-2x+1-1)-4=0$$

Vertex by $(x-1)^2-1-4=0$

Vertex by $(x-1)^2-1-4=0$

Then solve by $(x-1)^2-5=0$

Then solve by $(x-1)^2=5$

"square-rooting"

 $(x-1)^2=\frac{1}{2}$

Now create

two equations $x-1=\sqrt{5}$
 $x-1+1=\sqrt{5}+1$
 $x-1+1=\sqrt{5}+1$

These are 'exact roots'

End of the video

do both Try on Your Owns

- full solutions provided

textbook questions are **OPTIONAL**

Try This on Your Own

1. Graphing - Using Nspire

$$-5t^2+40t+45=0$$

To graph this, what equation are you putting into the Ti-Nspire?

What part of the parabola are you looking for?

What is the solution?

On Your Own #1

1. Graphing - Using Nspire

$$-5t^2+40t+45=0$$

To graph this, what equation are you putting into the Ti-Nspire?

What part of the parabola are you looking for?

zeros

What is the solution?

From the graph

$$x_1 = -1$$

$$x_2 = 9$$

Therefore solution is t_1 =-1 and t_2 =9

Now use your graph to answer the following ...

The flight of a ball is modelled by the function $h(t) = -5t^2 + 40t + 45$ where h is the height in metres and t is the time in seconds.

Determine how long the ball will be above 80m.

- What does the 80 represent? _____
- 2. What 'quadratic equation" are you trying to solve. _

Now use your graph to answer the following $\ensuremath{\dots}$

The flight of a ball is modelled by the function $h(t) = -5t^2 + 40t + 45$ where h is the height in metres and t is the time in seconds.

Determine how long the ball will be above 80m.

- 1. What does the 80 represent? Height of the ball
- 2. What 'quadratic equation" are you trying to solve. $-5t^2 + 40t + 45 = 80$

The ball is above 80 m from 1 sec to 7 sec, so the ball is above 80 m for 6 seconds.

Using Algebra - Method 3 - Factor

$$-5t^2 + 40t + 45 = 80$$

$$-5t^2 + 40t + 45-80 = 80-80$$

$$-5t^2 + 40t - 35 = 0$$

$$-5(t^2 - 8t - 7) = 0$$

$$-5(t-7)(t-1) = 0$$

$$(t-7) = 0$$
 $(t-1) = 0$

$$t = 7$$
 $t = 1$

On Your Own #2

Example - Solve the following Quadratic Equation using Four Methods.

$$3x^2 - 5x - 30 = x(x-1)$$

- 1. Graphing
- 2. Factoring
- 3. Vertex Form
- 4. Quadratic Formula

On Your Own #3

Solve the following Quadratic Equation using Four Methods.

$$-2x^2-4x=-50$$

Optional Additional Practise

pg 177 # 1ab, 2ab, 5, 6a, 7, 8, 12, 14

1. Determine the roots of each equation by factoring.

a)
$$x^2 + 5x + 4 = 0$$
 c) $4x^2 - 9 = 0$

c)
$$4x^2 - 9 = 0$$

b)
$$x^2 - 11x + 18 = 0$$

d)
$$2x^2 - 7x - 4 = 0$$

2. Use the quadratic formula to determine each of the roots to two decimal places.

a)
$$x^2 - 4x - 9 = 0$$

c)
$$-2x^2 + 3x - 6 = 0$$

b)
$$3x^2 + 2x - 8 =$$

a)
$$3x^2 + 2x - 8 = 0$$

b) $3x^2 + 2x - 8 = 0$
d) $0.5x^2 - 2.2x - 4.7 = 0$

5. Locate the *x*-intercepts of the graph of each function.

a)
$$f(x) = 3x^2 - 7x - 2$$

b)
$$f(x) = -4x^2 + 25x - 21$$

6. Determine the break-even quantities for each profit function, where x is the number sold, in thousands.

a)
$$P(x) = -x^2 + 12x + 28$$

c)
$$P(x) = -2x^2 + 22x - 17$$

b)
$$P(x) = -2x^2 + 18x - 40$$

b)
$$P(x) = -2x^2 + 18x - 40$$
 d) $P(x) = -0.5x^2 + 6x - 5$

7. The flight of a ball hit from a tee that is 0.6 m tall can be modelled by the function $h(t) = -4.9t^2 + 6t + 0.6$, where h(t) is the height in metres at time t seconds. How long will it take for the ball to hit the ground?

8. The population of a region can be modelled by the function $P(t) = 0.4t^2 + 10t + 50$, where P(t) is the population in thousands and t is the time in years since the year 1995.

- a) What was the population in 1995?
- b) What will be the population in 2010?
- c) In what year will the population be at least 450 000? Explain your answer.

- 12. Jackie mows a strip of uniform width around her 25 m by 15 m rectangular \blacksquare lawn and leaves a patch of lawn that is 60% of the original area. What is the
- 13. A small flare is launched off the deck of a ship. The height of the flare above the water is given by the function $h(t) = -4.9t^2 + 92t + 9$, where h(t) is measured in metres and t is time in seconds.
 - a) When will the flare's height be 150 m?
 - b) How long will the flare's height be above 150 m?

Lesson 3.5, pp. 177-178 **1.** a) x = -1 or -4 b) x = 2 or 9 c) $x = \pm \frac{3}{2}$ d) $x = -\frac{1}{2}$ or 4a) x = 5.61 or -1.61 c) no real roots b) x = 1.33 or -2 d) x = -1.57 or 5.97 a) x = -1 or -0.25 b) x = 1 or 4.5 a) i) Solve by factoring, function factors ii) x = 0 or 10 b) i) Quadratic formula, function does not factor

ii)
$$x = \frac{-3 \pm \sqrt{5}}{4}$$

a) x = 4
 i) Quadratic formula, function does not factor
 ii) x = -2 ± √7

a) $\lambda = 2 - \sqrt{\lambda}$ d) i) Quadratic formula, function does not factor ii) $x = -4 \pm \sqrt{7}$ e) i) Solve by factoring, function factors ii) x = -1 or 10

f) i) Quadratic formula, function does not factor ii) $x = 2 \pm \sqrt{19}$

5. a) (2.59, 0), (-0.26, 0)

b) $(1,0), \left(\frac{21}{4},0\right)$

6. a) 14 000 b) 4000 or 5000 c) 836 or 10 164 d) 901 or 11 099

7. 1.32 s

8. a) 50 000 **b**) 290 000

12. 2.1 m

13. a) after 1.68 s and again at 17.09 s

b) The rocket will be above 150 m for 17.09 - 1.68 = 15.41 s.