Transformations Pull It Together

Video Starts here ...

We are at the end of the Cycle, and the next Task is to

- complete "Check Your Learning Cycle 3"
- it will be posted Tuesday May 5th
- due end of day Thursday May 7thno exceptions.

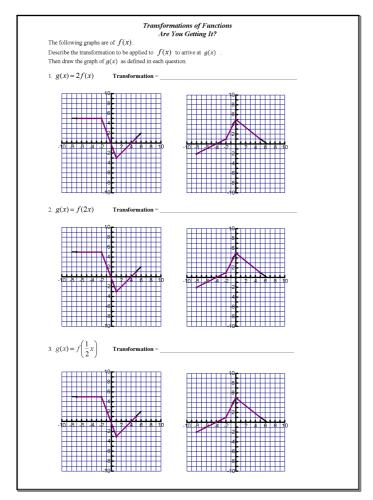
Today we have Pulled Together some questions and solutions to help you fully understand Transformations.

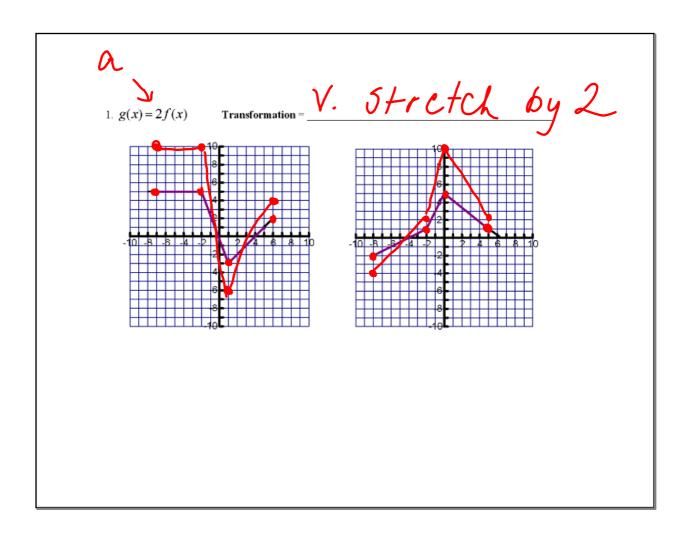
Are You Getting it ...

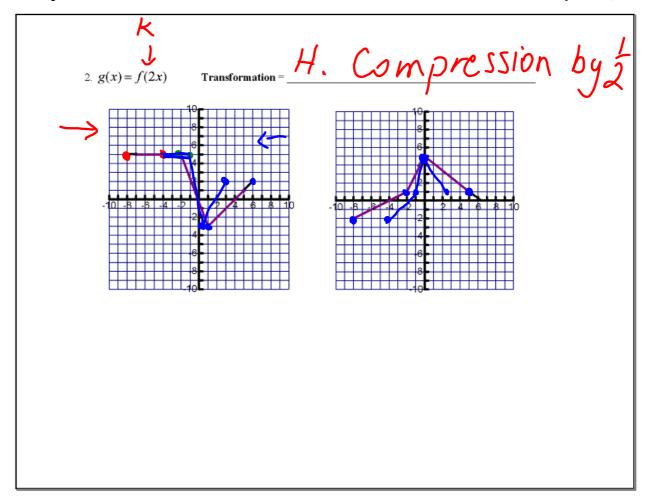
Pause the video,

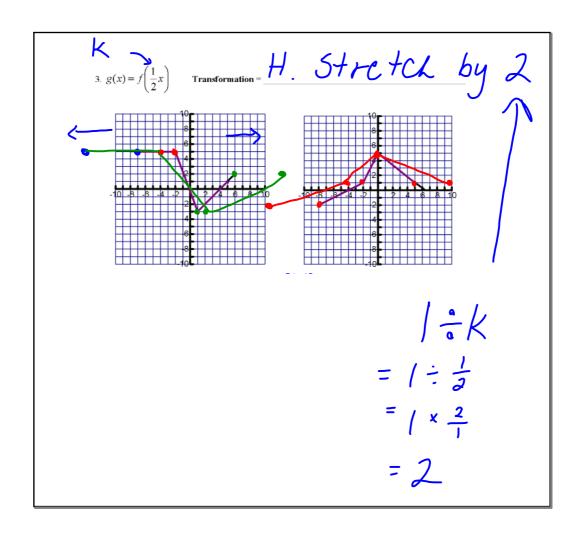
A pdf is provided, print it if you can or just copy it

Complete these questions, when done, restart the video and Mrs Major will go through the solutions.









Correct Terminology is Important

The Video ends here.

Continue through the remaining questions, full solutions are provided but give each question a good try FIRST.

- **4.** Explain what transformations you would need to apply to the graph of y = f(x) to graph each function.
- a) y = 3f(x) 1 c) y = f(2x) 5 e) $y = \frac{2}{3}f(x+3) + 1$
- **b)** y = f(x-2) + 3 **d)** $y = -f(\frac{1}{2}x) 2$ **f)** y = 4f(-x) 4

Correct Terminology is Important

- **4.** Explain what transformations you would need to apply to the graph of
- y = f(x) to graph each function.

$$\mathbf{a)} \quad y = 3f(x) - 1$$

c)
$$y = f(2x) - 5$$

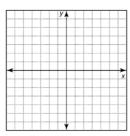
a)
$$y = 3f(x) - 1$$
 c) $y = f(2x) - 5$ e) $y = \frac{2}{3}f(x+3) + 1$

b)
$$y = f(x-2) + 3$$
 d) $y = -f(\frac{1}{2}x) - 2$ **f)** $y = 4f(-x) - 4$

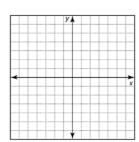
- 4. a) Vertical stretch, factor 3, then translation 1 unit down
 - b) Translation 2 units right and 3 units up
 - c) Horizontal compression, factor $\frac{1}{2}$, then translation 5 units down
 - d) Reflection in x-axis, horizontal stretch with factor 2, and then translation 2 units down
 - e) Vertical compression, factor $\frac{2}{3}$, then translation 3 units left and
 - f) Vertical stretch with factor 4, reflection in γ -axis, and then translation 4 units down

Determine ALL the transformations and then complete them Step-by-Step.

12. For $f(x) = \sqrt{x}$, sketch the graph of h(x) = f(-3x - 12).



11. For $f(x) = x^2$, sketch the graph of g(x) = f(2x + 6).



BIG HINT - FACTOR OUT THE K

g(x) = a f(k(x-a)) + C

12. For $f(x) = \sqrt{x}$, sketch the graph of h(x) = f(-3x - 12).

$$h(x) = f\left(-3(x+4)\right)$$

11. For $f(x) = x^2$, sketch the graph of g(x) = f(2x + 6).

BIG HINT - FACTOR OUT THE K

g(x) = af(k(x-a)) + C

12. For $f(x) = \sqrt{x}$, sketch the graph of h(x) = f(-3x - 12).

 $h(x) = f\left(-3(x+4)\right)$

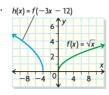
a=1

k=-3

-3

d=-4

c=0



11. For $f(x) = x^2$, sketch the graph of g(x) = f(2x + 6).

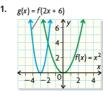
1) INCHECTION IN A-AXI

a=1

k=2

c=-3

c=0



This question uses the correct words you need to know them

- 19. The function y = f(x) has been transformed to y = af[k(x d)] + c. Determine a, k, c, and d; sketch the graph; and state the domain and range for each transformation.
 - a) A vertical stretch by the factor 2, a reflection in the x-axis, and a translation 4 units right are applied to $y = \sqrt{x}$
 - translation 4 units right are applied to $y = \sqrt{x}$. **b)** A vertical compression by the factor $\frac{1}{2}$, a reflection in the *y*-axis, a translation 3 units left, and a translation 4 units down are applied to $f(x) = \frac{1}{x}$.

This question uses the correct words you need to know them

- **19.** The function y = f(x) has been transformed to y = af[k(x d)] + c. Determine a, k, c, and d; sketch the graph; and state the domain and range for each transformation.
 - a) A vertical stretch by the factor 2, a reflection in the x-axis, and a
 - a) A vertical section by the factor 2, a fraction in the x-axis, and a translation 4 units right are applied to y = √x.
 b) A vertical compression by the factor ½, a reflection in the y-axis, a translation 3 units left, and a translation 4 units down are applied to f(x) = 1/x.

19. a) a = -2, k = 1, c = 0, d = 4

 $\operatorname{domain} = \{x \in \mathbf{R} \, | \, x \geq 4\}, \, \operatorname{range} = \{y \in \mathbf{R} \, | \, y \leq 0\}$

b)
$$a = \frac{1}{2}$$
, $k = -1$, $c = -3$, $d = -4$
 $y = \frac{1}{2} \left(\frac{1}{(-(x+3))} \right) - 4$

domain = $\{x \in \mathbb{R} \mid x \neq -3\}$, range = $\{y \in \mathbb{R} \mid y \neq -4\}$

Applying Transformations to **Quadratic Functions**

- **20.** If f(x) = (x-2)(x+5), determine the *x*-intercepts for each function

 - a) y = f(x)b) y = -4f(x)c) $y = f(-\frac{1}{3}x)$ d) y = f(-(x+2))

```
Applying Transformations to
Quadratic Functions

20. If f(x) = (x-2)(x+5), determine the x-intercepts for each function.

a) y = f(x)
b) y = -4f(x)
d) y = f(-\frac{1}{3}x)
b) y = -4f(x)
d) y = f(-(x+2))

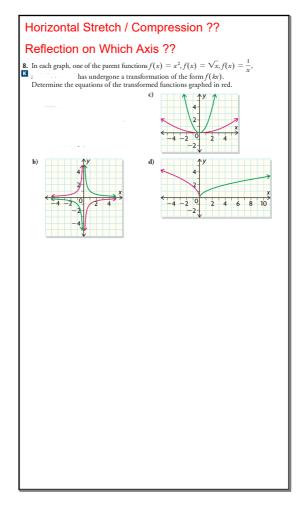
Therefore f(x) = (x-2)(x+5)
f(
```

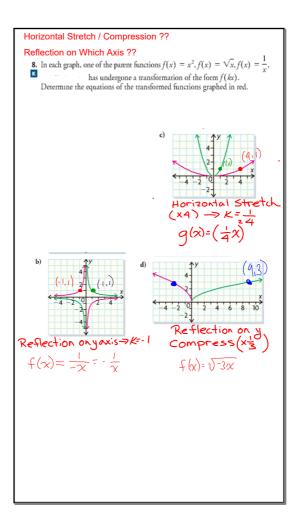
```
Applying Transformations to
Quadratic Functions

20. If f(x) = (x-2)(x+5), determine the x-intercepts for each function.

a) y = f(x)
b) y = -4f(x)
d) y = f(-(x+2))

x = -4f(x)
```





į l
į l

3U - C3 - day 12 - Transformations - PIT - Online - ANS.notebook