Method \#1 - Factoring and Using the Roots
Method \#2 - Partial Factoring
Method \#3 - Completing the Square
Method \#4 - The Formula

Worked With

\qquad
Worked With \qquad

1. Given the revenue function $R(x)=-3 x^{2}+74 x$, and the cost function $C(x)=12 x-559$, where x is the number of items sold in thousands, determine;

Method Used

 \#a. The profit function $P(x)$

ANSWER \qquad
b. The value of x that maximizes profit

ANSWER \qquad
c. The maximum profit.

ANSWER \qquad
2. The profit function for a certain product is given by $P(x)=-5(x-7)(x-13)$, where x is the number of items sold in thousands. What quantity of items sold will produce the maximum profit?

ANSWER \qquad
3. The cost per day of producing widgets at Company XYZ is modeled by the function $C(x)=0.04 x^{2}-8.504 x+25302$, where $C(x)$ is the cost per day in dollars and x is the number of widgets produced in thousands. Find the daily production level that will minimize your costs.

Method Used
\#
Method Used \# Method Used
\#

Method
 Used

ANSWER
ANSWER
5. A CD company has been selling 1200 computer games CDs per week at $\$ 18$ each. Data indicates that for each $\$ 1$ increase, there will be a loss of 40 sales per week. If it costs $\$ 10$ to produce each CD , what should the selling price be in order to maximize the profit?

ANSWER \qquad

