Domain and Range

Learning Goals

Number Types:

1, 2, 3, 4, ...

0, 1, 2, 3, 4, ...

- better understanding of set notation
- finding domain and range in a variety of ways

Set Notation

whole ____

Natural

$$\frac{1}{4}$$
 = 0.25, $\frac{7}{3}$ = 2.33333..., 5 since $\frac{5}{1}$ Rational

 $\sqrt{2}$, π (numbers that can't be expressed as fractions) Irrational

$$\sqrt{-4} \Rightarrow non-real$$
imaginary (i)

clement of Real
$$D = \{x \in \mathbb{R} \mid -8 \le x \le 4\}$$
Such that

What does this represent?

Continuous Graph

 A graph can be drawn without lifting your pencil from the paper

Real = R

- Discrete Graph
 - A graph that is defined only for a set of numbers that can be listed, such as integers

Integers = I

$$\{(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)\}$$

$$D = \left\{ x \in W \middle| 1 \le x \le 8 \right\}$$

$$R = \left\{ y \in N \middle| 3 \le y \le 10 \right\}$$

Determine the domain and range in set notation.

$$D = \{ x \in \mathbb{R} \mid -5 \le x \le 4 \} \quad D = \{ -3, -2, -1, 1, 3 \}$$

$$R = \{ y \in \mathbb{R} \mid -1 \le y \le 6 \} \quad R = \{ y \in \mathbb{I} \mid 1 \le y \le 4 \}$$

$$D = \left\{ x \in \overline{L} \middle| -4 \le x \le 3 \right\}$$

$$R = \left\{ y \in \overline{L} \middle| -3 \le y \le 4 \right\}$$

$$D = \{x \in \mathbb{I} \mid -4 \le x \le 3\}$$

$$D = \{x \in \mathbb{R} \mid -4 < x < 1\}$$

$$2 < x < 5\}$$

$$R = \{y \in \mathbb{I} \mid -3 \le y \le 4\}$$

$$R = \{1, 3\}$$

1. $f(x) = -3(x+1)^2 + 6$

On the Boards...

$$2. \qquad f(x) = \sqrt{x+4}$$

$$3. \qquad f(x) = \frac{1}{x-2}$$

4.
$$f(x) = \sin(x) - 3$$

5.
$$g(x) = 2^x + 3$$

Real World Context Using a Linear Function

You are planning a graduation party. The hall costs \$500, and each meal costs \$50. The hall can fit 100 people.

- a) Use function notation to write an equation for this situation.
- b) Determine the domain and range.

Real World Context Using a Quadratic Function

Indiana Jones is standing on a cliff and he shoots an arrow up into the air; the arrow falls to the ground.

The flight of the arrow is defined by $f(x) = -5(x-1)^2 + 20$.

Determine the domain and range.

On the Boards...

Find Domain and Range

- sketch to help you

$$f(x) = -3(x+1)^2 + 6$$

$$f(x) = \sqrt{x+4}$$

3U - C1 - day 8 - Domain and Range - partial ANS.notebook

$$f(x) = \sin(x) - 3$$

Where is the asymptote going to be?

Real World Context Using a Linear Function

You are planning a graduation party. The hall costs \$500, and each meal costs \$50. The hall can fit 100 people.

- a) Use function notation to write an equation for this situation.
- b) Determine the domain and range.

Real World Context Using a Quadratic Function

Indiana Jones is standing on a cliff and he shoots an arrow up into the air; the arrow falls to the ground.

The flight of the arrow is defined by $f(x) = -5(x-1)^2 + 20$.

Determine the domain and range.

For each of the following functions,

- 1. Identify the Parent Function
- 2. Graph on TI-Nspire.
- 3. Determine the Domain and Range.

$$f(x) = 4x - 5$$

- $g(x) = (x+2)^2 5$
- $h(x) = -2(x+9)^2$
- $m(x) = \sqrt{x+3}$
- $n(x) = -2\sqrt{x-9} + 3$
- $p(x) = \frac{1}{x+9}$
- $q(x) = \frac{1}{x 5} + 2$
- $r(x) = \frac{1}{2x+8} 5$
- $s(x) = 2\sin x 10$
- $t(x) = 2\sqrt{x-7} + 3$
- $v(x) = 5 \times 2^x + 1$
- $w(x) = -2(x-4)^2 + 5$
- $b(x) = 3\sin 4x + 1$
- $c(x) = 2^x 4$
- $d(x) = 2^{x-5} + 7$
- $f(x) = 3\sin(x 45) 1$

Domain and Range - SOLUTIONS

$$a. \qquad f(x) = 4x - 5$$

$$D = \{x \in \Re\}$$

$$R = \{ v \varepsilon \mathfrak{R} \}$$

b.
$$g(x) = (x+2)^2 - 5$$

$$D = \{x \in \Re\}$$

$$R = \left\{ y \, \varepsilon \Re \big| y \ge -5 \right\}$$

c.
$$h(x) = -2(x+9)^2$$

$$D = \{x \in \Re\}$$

$$R = \{ y \in \Re | y \le 0 \}$$

d.
$$m(x) = \sqrt{x+3}$$

$$D = \left\{ x \in \Re | x \ge -3 \right\}$$

$$R = \{ y \in \Re | y \ge 0 \}$$

e.
$$n(x) = -2\sqrt{x-9} + 3$$

$$D = \left\{ x \in \Re | x \ge 9 \right\}$$

$$R = \{ y \in \Re | y \le 3 \}$$

$$f. \qquad p(x) = \frac{1}{x+9}$$

$$D = \left\{ x \in \Re \left| x \neq -9 \right. \right\}$$

$$R = \{ v \varepsilon \Re | y \neq 0 \}$$

g.
$$q(x) = \frac{1}{x-5} + 2$$

$$D = \left\{ x \in \Re | x \neq 5 \right\} \qquad R = \left\{ y \in \Re | y \neq 2 \right\}$$

h.
$$r(x) = \frac{1}{2x+8} - 5$$

$$D = \left\{ x \in \Re \middle| x \neq -4 \right\}$$

$$R = \{ y \in \Re | y \neq -5 \}$$

$$i. \qquad s(x) = 2\sin x - 10$$

$$D = \{x \in \Re\}$$

$$R=\{y\epsilon\mathbb{R}|-12\leq y\leq -8\}$$

j.
$$t(x) = 2\sqrt{x-7} + 3$$

$$D = \{x \in \mathbb{R} | x > 7\}$$

$$R = \{ y \in \mathbb{R} | y \ge 3 \}$$

$$k. \quad v(x) = 5 \times 2^x + 1$$

$$D = \{x \in \Re\}$$

$$R = \{y \in \mathbb{R} | y > 1\}$$

1.
$$w(x) = -2(x-4)^2 + 5$$

$$D = \{x \in \Re\}$$

$$R = \{ y \in \mathbb{R} | y \le 5 \}$$

$$b(x) = 3\sin 4x + 1$$

$$D = \{x \in \mathbb{R}\}$$

$$R = \{ y \in \mathbb{R} | -2 \le y \le 4 \}$$

n.
$$c(x) = 2^x - 4$$

$$D = \left\{ x \in \Re \right\}$$

n.
$$c(x) = 2^x - 4$$

$$D = \left\{ x \, \varepsilon \Re \right\}$$

$$R=\{y\epsilon\mathbb{R}|y>-4\}$$

o.
$$d(x) = 2^{x-5} + 7$$

$$D = \{x \in \Re\}$$

$$R = \{ y \in \mathbb{R} | y > 7 \}$$

p.
$$f(x) = 2\sin(x - 45) - 1$$

$$D = \{x \in \Re\}$$

$$R=\{y\epsilon\mathbb{R}| -3 \leq y \leq 1\}$$

Seatwork

pg 12 # 13, 15

pg 35 # 2, 5, 10, 15

pg 12

- 13. a) Sketch a graph of a function that has the set of integers as its domain and all integers less than 5 as its range.
 - b) Sketch a graph of a relation that is not a function and that has the set of real numbers less than or equal to 10 as its domain and all real numbers greater than -5 as its range.
- **15.** A freight delivery company charges \$4/kg for any order less than 100 kg and \$3.50/kg for any order of at least 100 kg.
 - a) Why must this relation be a function?
 - b) What is the domain of this function? What is its range?
 - c) Graph the function.
 - **d**) What suggestions can you offer to the company for a better pricing structure? Support your answer.

- 10. A ball is thrown upward from the roof of a 25 m building. The ball reaches a height of 45 m above the ground after 2 s and hits the ground 5 s after being thrown.
 - a) Sketch a graph that shows the height of the ball as a function of time.
 - b) State the domain and range of the function.
 - c) Determine an equation for the function.

Answers

pg 12

13. a) Answers may vary; for example:

b) Answers may vary; for example:

- 15. a) Each order quantity determines a single cost.
 - **b)** domain = $\{x \in \mathbb{R} \mid x \ge 0\}$, range = $\{y \in \mathbb{R} \mid y \ge 0\}$

c)

d) Answers may vary. For example, the company currently charges more for an order of 100 kg (\$350) than for an order of 99 kg (\$396). A better system would be for the company to charge \$50 plus \$3.50 per kilogram for orders of 100 kg or more. This would make the prices strictly increasing as the weight of the order increases.

- 2. a) domain = $\{0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10\}$, range = $\{-8, -7, -6, -5, -4, -2, 0, 4, 8\}$
 - **b**) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R}\}$
 - c) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R} \mid y \ge -8\}$
 - d) domain = $\{x \in \mathbb{R} \mid -6 \le x \le 6\}$, range = $\{y \in \mathbb{R} \mid -6 \le y \le 6\}$
- 5. a) Even at masses when the price changes, a single price (the lower one) is assigned. It would not make sense to assign two or more prices to the same mass.
 - b) domain = $\{x \in \mathbb{R} \mid 0 < x \le 500\}$, range = $\{0.52, 0.93, 1.20, 1.86, 2.55\}$

- **b)** domain = $\{t \in \mathbb{R} \mid 0 \le t \le 5\}$, range = $\{h \in \mathbb{R} \mid 0 \le h \le 45\}$
- c) $h = -5t^2 + 20t + 25$