
3U - C1 - day 7 - Function Notation - ANS.notebook

What did you do for homework?

PRACTISING

5. Using a graphing calculator and the WINDOW settings shown, graph each function. Use DEGREE mode. State whether the resulting functions are periodic. If so, state whether they are sinusoidal.

a) $y = 3 \sin x + 1$

c) $y = \cos(2x) - \sin x$

e) $y = 0.5 \cos x - 1$

b) $y = (0.004x)\sin x$

d) $y = 0.005x + \sin x$

f) $y = \sin 90^{\circ}$

- 6. Based on your observations in question 5, what can you conclude about any function that possesses sine or cosine in its equation?
- 7. If $g(x) = \sin x$ and $h(x) = \cos x$, where $0^{\circ} \le x \le 360^{\circ}$, calculate each and explain what it means.

a) g(90°)

b) b(90°)

- 8. Using a graphing calculator in DEGREE mode, graph each sinusoidal function.
- Use the WINDOW settings shown. From the graph, state the amplitude, period, increasing intervals, decreasing intervals, and equation of the axis for each.

a) $y = 2 \sin x + 3$ c) $y = \sin(0.5x) + 2$ e) $y = 2 \sin(0.25x)$

b) $y = 3 \sin x + 1$ **d)** $y = \sin(2x) - 1$ **f)** $y = 3 \sin(0.5x) + 2$

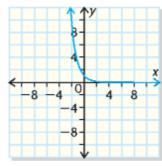
FURTHER Your Understanding

1. Use differences to identify the type of function represented by the table of values.

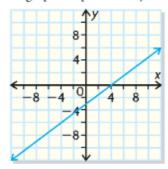
)	х	у
	-4	5
	-3	8
	-2	13
	-1	20
	0	29
	1	40

c)

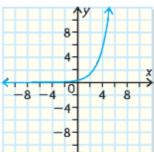
У
-2.75
-2
1
13
61
253

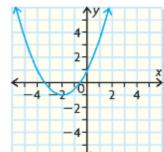

b)

х	у
-5	32
-4	16
-3	8
-2	4
-1	2
0	1


х	У
0.5	0.9
0.75	1.1
1	1.3
1.25	1.5
1.5	1.7
1.75	1.9

2. What type of function is represented in each graph? Explain how you know.


a)


c)

Ь)

d)

Function Notation

Learning Goals

- learn functions notation
- be able to use function notation

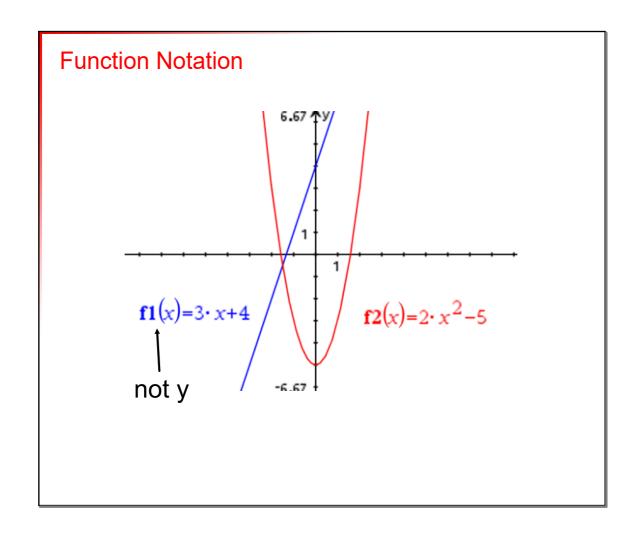
Write down an equation of a straight line.

$$y = \frac{1}{2}x + 5$$

Write down an equation of a parabola.

$$y = \frac{1}{2}x^2 + 6$$

Graph your lines on your TI-Nspire


$$f_1(x) = \frac{1}{2}x + 5$$

Function Notation

- another way of writing an equation
- instead of y we use f(x)

y=4x-5 is the ---

y=4x-5 is the same as f(x)=4x-5

$$y=3x+5$$

What is the value of y when x=2?

$$x = 27$$

 $y = 3x + 5$
 $= 3(2) + 5$
 $= 11$

$$f(x)=3x+5$$

$$f(2)=?$$
 $3(2)+5$

Is it always "f"?

No, any letter can be used.

Most common --- f, g, h

d(t) --- distance as a function of time

h(t) --- height as a function of time

v(t) --- velocity as a function of time

Using different letters makes it easier to talk about 2 or more different functions.

On the Boards...

$$f(x)=2x+3$$

Find f(3)

$$f(3) = 2(3) + 3$$
 $f(4) = 2(4) + 3$
= 6 + 3 = 8 + 3
= 9

$$f(3) = 2(3) + 3$$
 $f(4) = 2(4) + 3$
= 6 + 3 = 8 + 3
= 9 = 11

$$g(x)=3x^{2}-2x+5$$
Find $g(5)$

$$= 3(5)^{2}-2(5)+5 = 2(3(5)^{2}-2(5)+5)$$

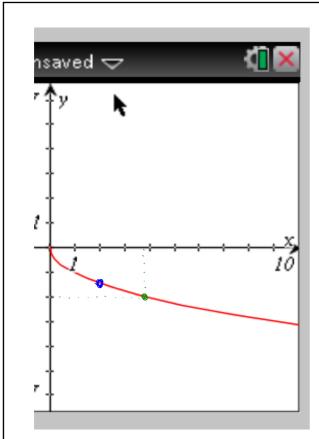
$$= 70$$

$$= 2(70)$$

$$= 140$$

$$g(5)-g(4)$$

$$= 3(5)^{2}-2(5)+5-(3(4)^{2}-2(4)+5)$$


$$= 70-45$$

$$= 25$$

$$= g(1)$$

$$= 3(1)^{2}-2(1)+5$$

3f(1)+g(-2) f(3x)+g(2x)
=
$$3(1^2+5(1))+3(-2)+15$$

= $3(6)-6+15$
= $18-6+15$
= 27 = $(3x)^2+5(3x)+3(2x)+15$
= $9x^2+15x+6x+15$
= $9x^2+21x+15$

Example: For the function shown in the graph, determine each of the following values.

- a) f(2) = -1, 5
- b) f(-1) undefined
- c) x if f(x) = -2

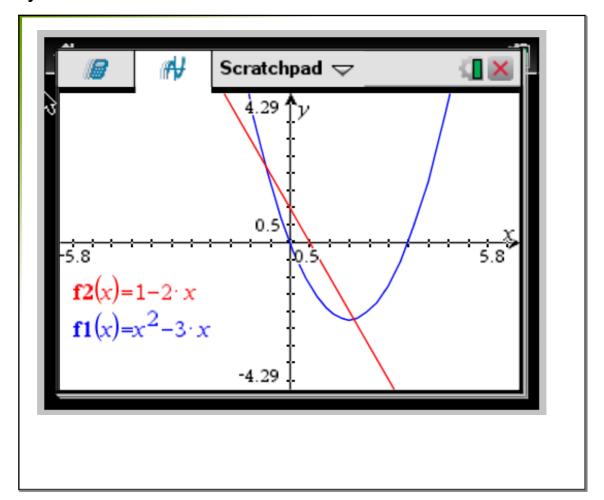
$$\chi = 3.7$$

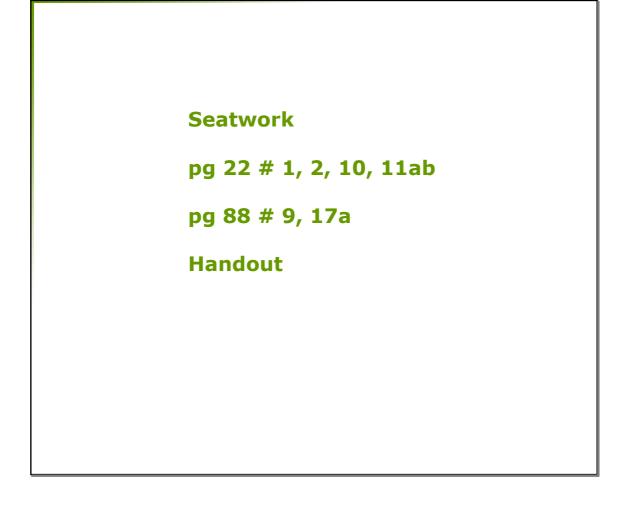
Do you understand?

Consider the functions $f(x) = x^2 - 3x$ and g(x) = 1 - 2x.

a) Show that f(2) > g(2), and explain what that means about their graphs. Use your TI-Nspire to graph.

$$f(2) = 2^{2} - 3(2)$$

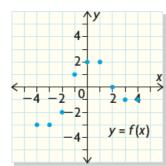

$$= 4 - 6$$

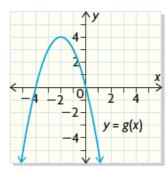

$$= -2$$

$$g(2) = 1 - 2(2)$$

$$= 1 - 4$$

$$= -3$$

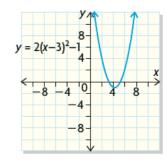




- 1. Evaluate, where f(x) = 2 3x.
- c) f(-4)
- e) *f*(*a*)

pg 22

- **b**) f(0)
- d) $f\left(\frac{1}{2}\right)$
- f) f(3b)
- **2.** The graphs of y = f(x) and y = g(x) are shown.



Using the graphs, evaluate

- a) f(1)
- b) g(-2)
- c) f(4) g(-2)d) x when f(x) = -3

- **9.** Consider the function $f(s) = s^2 6s + 9$.
 - a) Create a table of values for the function.
 - b) Determine each value.
 - i) f(0)
- **iv**) f(3)
- ii) f(1)
- v) [f(2) f(1)] [f(1) f(0)]
- iii) f(2)
- vi) [f(3) f(2)] [f(2) f(1)]
- c) In part (b), what do you notice about the answers to parts (v) and (vi)? Explain why this happens.
- **10.** The graph at the right shows $f(x) = 2(x-3)^2 1$.
- \mathbf{K} a) Evaluate f(-2).
 - b) What does f(-2) represent on the graph of f?
 - c) State the domain and range of the relation.
 - d) How do you know that f is a function from its graph?
- **11.** For g(x) = 4 5x, determine the input for x when the output of g(x) is
 - a) -6 b) 2 c) 0 d) $\frac{3}{5}$

- 13. As a mental arithmetic exercise, a teacher asked her students to think of a
- number, triple it, and subtract the resulting number from 24. Finally, they were asked to multiply the resulting difference by the number they first thought of.
 - Use function notation to express the final answer in terms of the original number.
 - b) Determine the result of choosing numbers 3, -5, and 10.
 - c) Determine the maximum result possible.
- **16.** Let $f(x) = x^2 + 2x 15$. Determine the values of x for which
 - $a) \quad f(x) = 0$
- b) f(x) = -12
- c) f(x) = -16
- **20.** A function f(x) has these properties:
 - The domain of f is the set of natural numbers.
 - f(1) = 1
 - f(x + 1) = f(x) + 3x(x + 1) + 1
 - a) Determine f(2), f(3), f(4), f(5), and f(6).
 - b) Describe the function.

pg 88

- **9.** Determine two non-equivalent polynomials, f(x) and g(x), such that f(0) = g(0) and f(2) = g(2).
- 17. a) Consider the linear functions f(x) = ax + b and g(x) = cx + d. Suppose that f(2) = g(2) and f(5) = g(5). Show that the functions must be equivalent.
 - b) Consider the two quadratic functions $f(x) = ax^2 + bx + c$ and $g(x) = px^2 + qx + r$. Suppose that f(2) = g(2), f(3) = g(3), and f(4) = g(4). Show that the functions must be equivalent.

1. a) -4 c) 14

e) 2 - 3a

d) $\frac{1}{2}$ f) 2-9b

2. a) 2

b) 4

c) -5 d) -3 or -4

10. a) 49

b) The y-coordinate of the point on the graph with x-coordinate −2

c) domain = $\{x \in \mathbb{R}\}$, range = $\{y \in \mathbb{R} \mid y \ge -1\}$

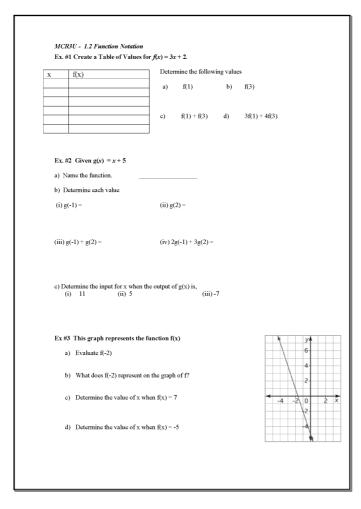
d) It passes the vertical-line test.

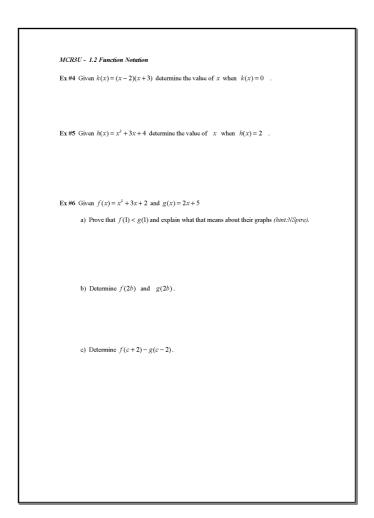
11. a) 2

b) 0.4 **c)** 0.8 **d)** $\frac{17}{25}$

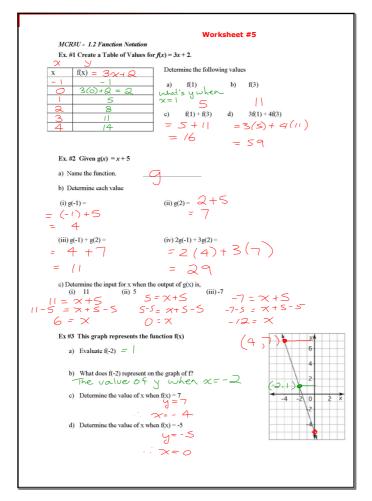
13. a) f(x) = (24 - 3x)x b) 45, -195, -60

c) 48


16. a) 3, -5 b) 1, -3 c) -1


20. a) 8, 27, 64, 125, 216 b) cube of x or x^3

pg 88


- **9.** Answers will vary. For example, f(x) = 2x and $g(x) = x^2$
- 17. a) both functions are linear; a pair of linear functions intersect at only one point, unless they are equivalent; since the functions are equal at two values, they must be equivalent
 - b) both functions are quadratric; a pair of quadratic functions intersect at most in two points, unless they are equivalent; since the functions are equal at three values, they must be equivalent

3U - C1 - day 7 - Function Notation - ANS.notebook

3U - C1 - day 7 - Function Notation - ANS.notebook


```
MCR3U - 1.2 Function Notation
Ex #4 Given k(x) = (x-2)(x+3)

Ex #4 Given k(x) = (x-2)(x+3) determine the value of x when k(x) = 0
                     Ex #5 Given h(x) = x^2 + 3x + 4 determine the value of x when h(x) = 2.
                      C = (x + 2)(x + 1)
C = (x + 2)(x + 2)
C = (x 
               a) Prove that f(1) < g(1) and explain what that means about their graphs (hint:NSpire).
               f'(i)=12+3(i)+2 g(i)=2(i)+5
                                  = 6
               b) Determine f(2b) and g(2b).
  f(2b) = (2b)^2 + 3(2b) + 2 g(2b) = 2(2b) + 5
                               =46+66+2 =46+5
               c) Determine f(c+2)-g(c-2).
      f((+2) = (c+2)^2 + 3(c+2) + 2
                                   = c^2 + 4c + 4 + 3c + 6 + 2
                                     =c^2+7c+12
       g(c-2) = 2(c-2) + 5
                                            = 2c - 4 + 5
= 2c + 1
            so... f((+2)-g((-2)
                             = c^2 + 7c + 12 - (2c + 1)
                                 = (2+7(+12-26-1
                                     = c^2 + 5c + 11
```

1.7.2 Worksheet.pdf

Function_or_Not_a_Function.tns