Properties of Quadratics

Learning Goals

- review of quadratics from grade 10
- three forms of the function
- graphing quadratic functions
- table of values how do you know it's quadratic?

Quadratic function - has a degree of 2

the highest exponent of x is 2

Graph

$$f(x) = x^2$$

$$g(x) = x^2 + 3$$

$$g(x) = x^2 + 5$$
 $h(x) = 2(x+1)^2 + 5$

- parabola
- -domain $\rightarrow x$ values $\rightarrow x$
- symmetrical around the axis of symmetry
- important points:

vertex, x-intercepts (zeros), y-intercept, optimum value

Step pattern -> must have a vertex transformations

1

- standard form: $f(x) = ax^2 + bx + c$ direction of opening y-int y-int
- Zeros
- $f(x) = a(x-d)^{2} + c$ $f(x) = a(x-d)^{2} + c$ $f(x) = a(x-d)^{2} + c$ - vertex form:

Three Forms of a Quadratic Function

Given the three different forms of a parabola below, indicate the name of the form, then indicate only the information that is easily available by visual inspection.

	$f(x) = -2(x-3)^2 + 8$	f(x) = -2(x-5)(x-1)	$f(x) = -2x^2 + 12x - 10$
General Form	$y = a(x-d)^2 + C$	y = a(x-s)(x-t)	$y = ax^2 + bx + c$
Form Name	vertex	factored	standard
Vertex	(3,8)		
Direction of Opening	down	down	down
y- intercept			-10
Zeroes		(5,0)(1,0)	
Range	y < 8		
y-value	<u>)</u>		
y-vance	_		

2

Graphing Quadratic Functions

Graphing in Vertex Form $f(x) = -2(x-3)^2 + 8$

- 1) Plot the Vertex (3,8)

(f) Determine the y intercept:

$$f(0) = -2(0-3)^{2} + 8$$

$$= -2(9) + 8$$

$$= -18 + 8$$

Graphing in Factored Form f(x) = -2(x-5)(x-1)

- 1) Plot the zeroes
- 2) Determine the Axis of Symmetry

$$X = \frac{5+1}{2} = 3$$

3) Determine the vertex

f(3) =
$$-2(3-5)(3-1)$$

= $-2(-2)(2)$
= 8

On the Boards...

Given $f(x) = -3x^2 + 3x + 6$

Find

- a. zeros
- b. direction of opening
- c. vertex
- d. axis of symmetry
- e. domain and range

a. zeros

$$f(x) = -3(x^2 - x - 2)$$

$$= -3(x - 2)(x + 1)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\chi = 2 \qquad \chi = -1$$

b. direction of opening

$$a = -3$$

a = -3 $\therefore down$

zeros
$$2, -1$$

$$AOS \qquad \chi = \frac{2 + (-1)}{2} = \frac{1}{2}$$

$$f(x) = -3\left(\frac{1}{2} - 2\right)\left(\frac{1}{2} + 1\right)$$

$$= -3\left(\frac{-3}{2}\right)\left(\frac{3}{2}\right)$$

$$= \frac{27}{4}$$
d. axis of symmetry

$$x = \frac{1}{2}$$
 (from above)

$$R = \left\{ y \in \mathbb{R} \mid y \leq \frac{27}{4} \right\}$$

Seatwork

pg 145 # 1-4, 6a, 7, 9a, 11, 12, 13

CHECK Your understanding

1. Determine whether each function is linear or quadratic. Give a reason for

· ·				
a)	х	у		
	-2	15		
	-1	11		
	0	7		
	1	3		
	-			

2. State whether each parabola opens up or down.

$$a) \quad f(x) = 3x^2$$

c)
$$f(x) = -(x+5)^2 - 1$$

b)
$$f(x) = -2(x-3)(x+1)$$

b)
$$f(x) = -2(x-3)(x+1)$$
 d) $f(x) = \frac{2}{3}x^2 - 2x - 1$

- 3. Given f(x) = -3(x-2)(x+6), state
 - a) the zeros
 - b) the direction of opening
 - c) the equation of the axis of symmetry
- 4. Given the parabola at the right, state
 - a) the vertex
 - b) the equation of the axis of symmetry
 - c) the domain and range

5. Graph each function. State the direction of opening, the vertex, and the equation of the axis of symmetry.

a)
$$f(x) = x^2 - 3$$

c)
$$f(x) = 2(x-4)(x+2)$$

$$f(x) = -(x + 2)^2 = 6$$

b)
$$f(x) = -(x+3)^2 - 4$$
 d) $f(x) = -\frac{1}{2}x^2 + 4$

6. Express each quadratic function in standard form. State the y-intercept of

a)
$$f(x) = -3(x-1)^2 + 6$$

b)
$$f(x) = 4(x-3)(x+7)$$

- Examine the parabola at the left.
- a) State the direction of opening.
 - b) Name the coordinates of the vertex.
 - List the values of the x-intercepts.
 - d) State the domain and range of the function.
 - e) If you calculated the second differences, what would their sign be? How do you know?
 - Determine the algebraic model for this quadratic function.
- 8. Examine the parabola at the left.
 - a) State the direction of opening.
 - Find the coordinates of the vertex.
 - What is the equation of the axis of symmetry?
 - d) State the domain and range of the function.
 - If you calculated the second differences, what would their sign be? Explain.
- 9. Each pair of points (x, y) are the same distance from the vertex of their parabola. Determine the equation of the axis of symmetry of each parabola.
 - a) (-2, 2), (2, 2)
- d) (-5,7),(1,7)
- **b**) (-9, 1), (-5, 1)
- e) (-6, -1), (3, -1)
- c) (6, 3), (18, 3)

- 11. The height of a rocket above the ground is modelled by the quadratic
- function $h(t) = -4t^2 + 32t$, where h(t) is the height in metres t seconds after the rocket was launched.
 - a) Graph the quadratic function.
 - b) How long will the rocket be in the air? How do you know?
 - c) How high will the rocket be after 3 s?
 - d) What is the maximum height that the rocket will reach?
- 12. A quadratic function has these characteristics:
- x = -1 is the equation of the axis of symmetry.
 - x = 3 is the x-intercept.
 - y = 32 is the maximum value.

Determine the y-intercept of this parabola.

 $g(x) = -(x-1)^2 + 2$ are alike, and two ways in which they are different.

Lesson 3.1, pp. 145-147

- 1. a) linear, first differences are constant
 - **b)** quadratic, second differences are constant
 - c) linear, first differences are constant
 - **d**) quadratic, second differences are constant
- **2.** a) opens up b) opens down c) opens down d) opens up
- **3.** a) zeros x = 2 or -6 b) opens down c) x = -2
- **4.** a) vertex (-2,3) b) x = -2
 - c) domain = $\{x \in \mathbf{R}\}$, range = $\{y \in \mathbf{R} \mid y \le 3\}$

$$x - y$$

6. a)
$$f(x) = -3x^2 + 6x + 3$$
, (0, 3)

b)
$$f(x) = 4x^2 + 16x - 84, (0, -84)$$

- 7. a) opens down
 - **b**) vertex (-1, 8)
 - c) (-3,0),(1,0)
 - d) domain = $\{x \in \mathbf{R}\}$, range = $\{y \in \mathbf{R} \mid y \le 8\}$
 - e) negative; parabola opens down

f)
$$f(x) = -2(x+1)^2 + 8$$
 or $f(x) = -2(x+3)(x-1)$

9. a)
$$x =$$

c)
$$x = 12$$

9. a)
$$x = 0$$
 c) $x = 12$ e) $x = -1.5$

b)
$$x = -7$$

d)
$$x = -2$$

b)
$$x = -7$$
 d) $x = -2$ **f)** $x = -\frac{5}{16}$

11. a)

b) 8 s; height starts at 0 m and is 0 m again after 8 s.

c)
$$h(3) = 60 \text{ m}$$

12.
$$y = 30$$

13. Similarities: both are quadratic; both have axis of symmetry x = 1. Differences: f(x) opens up, g(x) opens down; f(x) has vertex (1, -2), g(x) has vertex (1, 2)